Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nat Rev Immunol ; 23(6): 381-396, 2023 06.
Artigo em Inglês | MEDLINE | ID: covidwho-20245248

RESUMO

Neutralizing antibodies are known to have a crucial role in protecting against SARS-CoV-2 infection and have been suggested to be a useful correlate of protection for vaccine clinical trials and for population-level surveys. In addition to neutralizing virus directly, antibodies can also engage immune effectors through their Fc domains, including Fc receptor-expressing immune cells and complement. The outcome of these interactions depends on a range of factors, including antibody isotype-Fc receptor combinations, Fc receptor-bearing cell types and antibody post-translational modifications. A growing body of evidence has shown roles for these Fc-dependent antibody effector functions in determining the outcome of SARS-CoV-2 infection. However, measuring these functions is more complicated than assays that measure antibody binding and virus neutralization. Here, we examine recent data illuminating the roles of Fc-dependent antibody effector functions in the context of SARS-CoV-2 infection, and we discuss the implications of these data for the development of next-generation SARS-CoV-2 vaccines and therapeutics.


Assuntos
COVID-19 , Humanos , Vacinas contra COVID-19 , Anticorpos Antivirais , SARS-CoV-2 , Anticorpos Neutralizantes , Fragmentos Fc das Imunoglobulinas , Receptores Fc
2.
Front Immunol ; 14: 1129245, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2294762

RESUMO

Introduction: Numerous agents for prophylaxis of SARS-CoV-2-induced diseases are currently registered for the clinical use. Formation of the immunity happens within several weeks following vaccine administration which is their key disadvantage. In contrast, drugs based on monoclonal antibodies, enable rapid passive immunization and therefore can be used for emergency pre- and post-exposure prophylaxis of COVID-19. However rapid elimination of antibody-based drugs from the circulation limits their usage for prolonged pre-exposure prophylaxis. Methods: In current work we developed a recombinant adeno-associated viral vector (rAAV), expressing a SARS-CoV-2 spike receptor-binding domain (RBD)-specific antibody P2C5 fused with a human IgG1 Fc fragment (P2C5-Fc) using methods of molecular biotechnology and bioprocessing. Results and discussions: A P2C5-Fc antibody expressed by a proposed rAAV (rAAV-P2C5-Fc) was shown to circulate within more than 300 days in blood of transduced mice and protect animals from lethal SARS-CoV-2 virus (B.1.1.1 and Omicron BA.5 variants) lethal dose of 105 TCID50. In addition, rAAV-P2C5-Fc demonstrated 100% protective activity as emergency prevention and long-term prophylaxis, respectively. It was also demonstrated that high titers of neutralizing antibodies to the SARS-CoV-2 virus were detected in the blood serum of animals that received rAAV-P2C5-Fc for more than 10 months from the moment of administration.Our data therefore indicate applicability of an rAAV for passive immunization and induction of a rapid long-term protection against various SARS-CoV-2 variants.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2 , Biotecnologia , Anticorpos Monoclonais , Anticorpos Antivirais , Fragmentos Fc das Imunoglobulinas
3.
Vaccine ; 41(15): 2427-2429, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: covidwho-2263857

RESUMO

A potential risk associated with vaccines for COVID-19 is antibody-dependent disease enhancement (ADE) in which vaccine induced antibody mediated immune responses may lead to enhanced SARS CoV- 2 acquisition or increased disease severity. Though ADE has not been clinically demonstrated with any of the COVID-19 vaccines so far, when neutralizing antibodies are suboptimal, the severity of COVID-19 has been reported to be greater. ADE is presumed to occur via abnormal macrophages induced by the vaccine based immune response by antibody-mediated virus uptake into Fc gamma receptor IIa (FcγRIIa) or by the formation of Fc-mediated excessive antibody effector functions. Beta-glucans which are naturally occurring polysaccharides known for unique immunomodulation by capability to interact with macrophages, eliciting a specific beneficial immune-response and enhancing all arms of the immune system, importantly without over-activation are suggested as safer nutritional supplement-based vaccine adjuvants for COVID-19.


Assuntos
Vacinas contra COVID-19 , COVID-19 , beta-Glucanas , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Fragmentos Fc das Imunoglobulinas , SARS-CoV-2 , Vacinação
4.
Life Sci ; 320: 121525, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2257977

RESUMO

AIMS: Vaccination has played an important role in protecting against death and the severity of COVID-19. The recombinant protein vaccine platform has a long track record of safety and efficacy. Here, we fused the SARS-CoV-2 spike S1 subunit to the Fc region of IgG and investigated immunogenicity, reactivity to human vaccinated sera, and neutralizing activity as a candidate protein vaccine. MATERIALS AND METHOD: We evaluated the immunogenicity of CHO-expressed S1-Fc fusion protein and tag-free S1 protein in rabbits via the production of S1-specific polyclonal antibodies. We subsequently compared the neutralizing activities of sera from immunized rabbits and human-vaccinated individuals using a surrogate Virus Neutralization Test (sVNT). KEY FINDINGS: The results indicate that S1-specific polyclonal antibodies were induced in all groups; however, antibody levels were higher in rabbits immunized with S1-Fc fusion protein than tag-free S1 protein. Moreover, the reactivity of human vaccinated sera against S1-Fc fusion protein was significantly higher than tag-free S1 protein. Lastly, the results of the virus-neutralizing activity revealed that vaccination with S1-Fc fusion protein induced the highest level of neutralizing antibody response against SARS-CoV-2. SIGNIFICANCE: Our results demonstrate that the S1 protein accompanied by the Fc fragment significantly enhances the immunogenicity and neutralizing responses against SARS-CoV-2. It is hoped that this platform can be used for human vaccination.


Assuntos
COVID-19 , Vacinas , Animais , Humanos , Coelhos , Glicoproteína da Espícula de Coronavírus , COVID-19/prevenção & controle , Fragmentos Fc das Imunoglobulinas/genética , Anticorpos Antivirais , SARS-CoV-2 , Anticorpos Neutralizantes , Proteínas Recombinantes
5.
Proc Natl Acad Sci U S A ; 119(48): e2212658119, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: covidwho-2265470

RESUMO

Protein glycosylation is a crucial mediator of biological functions and is tightly regulated in health and disease. However, interrogating complex protein glycoforms is challenging, as current lectin tools are limited by cross-reactivity while mass spectrometry typically requires biochemical purification and isolation of the target protein. Here, we describe a method to identify and characterize a class of nanobodies that can distinguish glycoforms without reactivity to off-target glycoproteins or glycans. We apply this technology to immunoglobulin G (IgG) Fc glycoforms and define nanobodies that specifically recognize either IgG lacking its core-fucose or IgG bearing terminal sialic acid residues. By adapting these tools to standard biochemical methods, we can clinically stratify dengue virus and SARS-CoV-2 infected individuals based on their IgG glycan profile, selectively disrupt IgG-Fcγ receptor binding both in vitro and in vivo, and interrogate the B cell receptor (BCR) glycan structure on living cells. Ultimately, we provide a strategy for the development of reagents to identify and manipulate IgG Fc glycoforms.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , Imunoglobulina G/metabolismo , SARS-CoV-2 , Fragmentos Fc das Imunoglobulinas/metabolismo , Polissacarídeos/metabolismo
6.
Nat Commun ; 14(1): 580, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: covidwho-2228819

RESUMO

Despite rapid and ongoing vaccine and therapeutic development, SARS-CoV-2 continues to evolve and evade, presenting a need for next-generation diverse therapeutic modalities. Here we show that nurse sharks immunized with SARS-CoV-2 recombinant receptor binding domain (RBD), RBD-ferritin (RFN), or spike protein ferritin nanoparticle (SpFN) immunogens elicit a set of new antigen receptor antibody (IgNAR) molecules that target two non-overlapping conserved epitopes on the spike RBD. Representative shark antibody variable NAR-Fc chimeras (ShAbs) targeting either of the two epitopes mediate cell-effector functions, with high affinity to all SARS-CoV-2 viral variants of concern, including the divergent Omicron strains. The ShAbs potently cross-neutralize SARS-CoV-2 WA-1, Alpha, Beta, Delta, Omicron BA.1 and BA.5, and SARS-CoV-1 pseudoviruses, and confer protection against SARS-CoV-2 challenge in the K18-hACE2 transgenic mouse model. Structural definition of the RBD-ShAb01-ShAb02 complex enabled design and production of multi-specific nanobodies with enhanced neutralization capacity, and picomolar affinity to divergent sarbecovirus clade 1a, 1b and 2 RBD molecules. These shark nanobodies represent potent immunotherapeutics both for current use, and future sarbecovirus pandemic preparation.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Anticorpos de Domínio Único , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Epitopos , Ferritinas/genética , Fragmentos Fc das Imunoglobulinas , Camundongos Transgênicos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Tubarões
7.
Cell Rep Med ; 4(2): 100918, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: covidwho-2184477

RESUMO

With the widespread vaccinations against coronavirus disease 2019 (COVID-19), we are witnessing gradually waning neutralizing antibodies and increasing cases of breakthrough infections, necessitating the development of drugs aside from vaccines, particularly ones that can be administered outside of hospitals. Here, we present two cross-reactive nanobodies (R14 and S43) and their multivalent derivatives, including decameric ones (fused to the immunoglobulin M [IgM] Fc) that maintain potent neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after aerosolization and display not only pan-SARS-CoV-2 but also varied pan-sarbecovirus activities. Through respiratory administration to mice, monovalent and decameric R14 significantly reduce the lung viral RNAs at low dose and display potent pre- and post-exposure protection. Furthermore, structural studies reveal the neutralizing mechanisms of R14 and S43 and the multiple inhibition effects that the multivalent derivatives exert. Our work demonstrates promising convenient drug candidates via respiratory administration against SARS-CoV-2 infection, which can contribute to containing the COVID-19 pandemic.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Animais , Camundongos , Humanos , SARS-CoV-2 , Pandemias , Anticorpos Neutralizantes , Fragmentos Fc das Imunoglobulinas
8.
Viruses ; 14(9)2022 09 09.
Artigo em Inglês | MEDLINE | ID: covidwho-2143622

RESUMO

Evusheld® (tixagevimab + cilgavimab; AZD7442) was the first anti-Spike monoclonal antibody (mAb) cocktail designed not only for treatment but also with pre-exposure prophylaxis in mind. The immunoglobulins were engineered for prolonged half-life by modifying the Fc fragment, thus creating a long-acting antibody (LAAB). We review here preclinical development, baseline and treatment-emergent resistance, clinical efficacy from registration trials, and real-world post-marketing evidence. The combination was initially approved for pre-exposure prophylaxis at the time of the SARS-CoV-2 Delta VOC wave based on a trial conducted in unvaccinated subjects when the Alpha VOC was dominant. Another trial also conducted at the time of the Alpha VOC wave proved efficacy as early treatment in unvaccinated patients and led to authorization at the time of the BA.4/5 VOC wave. Tixagevimab was ineffective against any Omicron sublineage, so cilgavimab has so far been the ingredient which has made a difference. Antibody monotherapy has a high risk of selecting for immune escape variants in immunocompromised patients with high viral loads, which nowadays represent the main therapeutic indication for antibody therapies. Among Omicron sublineages, cilgavimab was ineffective against BA.1, recovered efficacy against BA.2 and BA.2.12.1, but lost efficacy again against BA.4/BA.5 and BA.2.75. Our analysis indicated that Evusheld® has been used during the Omicron VOC phase without robust clinical data of efficacy against this variant and suggested that several regulatory decisions regarding its use lacked consistency. There is an urgent need for new randomized controlled trials in vaccinated, immunocompromised subjects, using COVID-19 convalescent plasma as a control arm.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , COVID-19/prevenção & controle , COVID-19/terapia , Ensaios Clínicos como Assunto , Combinação de Medicamentos , Humanos , Imunização Passiva , Fragmentos Fc das Imunoglobulinas , SARS-CoV-2 , Soroterapia para COVID-19
10.
J Immunol Methods ; 510: 113328, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-1977497

RESUMO

Monocytes are highly versatile innate immune cells responsible for pathogen clearance, innate immune coordination, and induction of adaptive immunity. Monocytes can directly and indirectly integrate pathogen-destructive instructions and contribute to disease control via pathogen uptake, presentation, or the release of cytokines. Indirect pathogen-specific instructions are conferred via Fc-receptor signaling and triggered by antibody opsonized material. Given the tremendous variation in polyclonal humoral immunity, defining the specific antibody-responses able to arm monocytes most effectively remains incompletely understood. While monocyte cell line-based assays have been used previously, cell lines may not faithfully recapitulate the full biology of monocytes. Thus, here we describe a multifaceted antigen-specific method for probing antibody-dependent primary monocyte phagocytosis (ADMP) and secondary responses. The assay not only reliably captures phagocytic uptake of immune complexes, but also detects unique changes in surface markers and cytokine secretions profiles, poorly detected by monocytic cell lines. The assay captures divergent polyclonal-monocyte recruiting activity across subjects with varying SARS-CoV-2 disease severity and also revealed biological nuances in Fc-mutant monoclonal antibody activity related to differences in Fc-receptor binding. Thus, the ADMP assay is a flexible assay able to provide key insights into the role of humoral immunity in driving monocyte phenotypic transitions and downstream functions across many diseases.


Assuntos
COVID-19 , Monócitos , Anticorpos Monoclonais , Complexo Antígeno-Anticorpo , Antígenos , Citocinas , Humanos , Fragmentos Fc das Imunoglobulinas , Fagocitose , SARS-CoV-2
11.
EBioMedicine ; 81: 104109, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: covidwho-1906947

RESUMO

BACKGROUND: Immunoglobulin G (IgG) antibodies serve a crucial immuno-protective function mediated by IgG Fc receptors (FcγR). Absence of fucose on the highly conserved N-linked glycan in the IgG Fc domain strongly enhances IgG binding and activation of myeloid and natural killer (NK) cell FcγRs. Although afucosylated IgG can provide increased protection (malaria and HIV), it also boosts immunopathologies in alloimmune diseases, COVID-19 and dengue fever. Quantifying IgG fucosylation currently requires sophisticated methods such as liquid chromatography-mass spectrometry (LC-MS) and extensive analytical skills reserved to highly specialized laboratories. METHODS: Here, we introduce the Fucose-sensitive Enzyme-linked immunosorbent assay (ELISA) for Antigen-Specific IgG (FEASI), an immunoassay capable of simultaneously quantitating and qualitatively determining IgG responses. FEASI is a two-tier immunoassay; the first assay is used to quantify antigen-specific IgG (IgG ELISA), while the second gives FcγRIIIa binding-dependent readout which is highly sensitive to both the IgG quantity and the IgG Fc fucosylation (FcγR-IgG ELISA). FINDINGS: IgG Fc fucosylation levels, independently determined by LC-MS and FEASI, in COVID-19 responses to the spike (S) antigen, correlated very strongly by simple linear regression (R2=0.93, p < 0.0001). The FEASI method was then used to quantify IgG levels and fucosylation in COVID-19 convalescent plasma which was independently validated by LC-MS. INTERPRETATION: FEASI can be reliably implemented to measure relative and absolute IgG Fc fucosylation and quantify binding of antigen-specific IgG to FcγR in a high-throughput manner accessible to all diagnostic and research laboratories. FUNDING: This work was funded by the Stichting Sanquin Bloedvoorziening (PPOC 19-08 and SQI00041) and ZonMW 10430 01 201 0021.


Assuntos
Fucose , Imunoglobulina G , Receptores de IgG , COVID-19/diagnóstico , COVID-19/terapia , Ensaio de Imunoadsorção Enzimática/métodos , Fucose/química , Fucose/metabolismo , Humanos , Imunização Passiva , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Receptores de IgG/química , Soroterapia para COVID-19
12.
Front Immunol ; 13: 901217, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1903025

RESUMO

Fc-mediated virus entry has been observed for many viruses, but the characterization of this activity in convalescent plasma against SARS-CoV-2 Variants of Concern (VOC) is undefined. In this study, we evaluated Fc-mediated viral entry (FVE) on FcγRIIa-expressing HEK293 cells in the presence of SARS-CoV-2 convalescent plasma and compared it with SARS-CoV-2 pseudovirus neutralization using ACE2-expressing HEK293 cells. The plasma were collected early in the pandemic from 39 individuals. We observed both neutralization and FVE against the infecting Washington SARS-CoV-2 strain for 31% of plasmas, neutralization, but not FVE for 61% of plasmas, and no neutralization or FVE for 8% of plasmas. Neutralization titer correlated significantly with the plasma dilution at which maximum FVE was observed, indicating Fc-mediated uptake peaked as neutralization potency waned. While total Spike-specific plasma IgG levels were similar between plasma that mediated FVE and those that did not, Spike-specific plasma IgM levels were significantly higher in plasma that did not mediate FVE. Plasma neutralization titers against the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) VOC were significantly lower than titers against the Washington strain, while plasma FVE activity against the VOC was either higher or similar. This is the first report to demonstrate a functional shift in convalescent plasma antibodies from neutralizing and FVE-mediating against the earlier Washington strain, to an activity mediating only FVE and no neutralization activity against the emerging VOC, specifically the Beta (B.1.351) and Gamma (P.1) VOC. It will be important to determine the in vivo relevance of these findings.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/terapia , Células HEK293 , Humanos , Imunização Passiva , Fragmentos Fc das Imunoglobulinas , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Soroterapia para COVID-19
13.
EBioMedicine ; 78: 103957, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: covidwho-1828375

RESUMO

BACKGROUND: Immunoglobulin G1 (IgG1) effector functions are impacted by the structure of fragment crystallizable (Fc) tail-linked N-glycans. Low fucosylation levels on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein-specific IgG1 has been described as a hallmark of severe coronavirus disease 2019 (COVID-19) and may lead to activation of macrophages via immune complexes thereby promoting inflammatory responses, altogether suggesting involvement of IgG1 Fc glycosylation modulated immune mechanisms in COVID-19. METHODS: In this prospective, observational single center cohort study, IgG1 Fc glycosylation was analyzed by liquid chromatography-mass spectrometry following affinity capturing from serial plasma samples of 159 SARS-CoV-2 infected hospitalized patients. FINDINGS: At baseline close to disease onset, anti-S IgG1 glycosylation was highly skewed when compared to total plasma IgG1. A rapid, general reduction in glycosylation skewing was observed during the disease course. Low anti-S IgG1 galactosylation and sialylation as well as high bisection were early hallmarks of disease severity, whilst high galactosylation and sialylation and low bisection were found in patients with low disease severity. In line with these observations, anti-S IgG1 glycosylation correlated with various inflammatory markers. INTERPRETATION: Association of low galactosylation, sialylation as well as high bisection with disease severity and inflammatory markers suggests that further studies are needed to understand how anti-S IgG1 glycosylation may contribute to disease mechanism and to evaluate its biomarker potential. FUNDING: This project received funding from the European Commission's Horizon2020 research and innovation program for H2020-MSCA-ITN IMforFUTURE, under grant agreement number 721815, and supported by Crowdfunding Wake Up To Corona, organized by the Leiden University Fund.


Assuntos
COVID-19 , Biomarcadores , Estudos de Coortes , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Estudos Prospectivos , SARS-CoV-2
14.
Haematologica ; 107(10): 2445-2453, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1779916

RESUMO

In order to improve the safety of COVID-19 vaccines, there is an urgent need to unravel the pathogenesis of vaccineinduced immune thrombotic thrombocytopenia (VITT), a severe complication of recombinant adenoviral vector vaccines used to prevent COVID-19, and likely due to anti-platelet factor 4 (PF4) IgG antibodies. In this study, we demonstrated that 1E12, a chimeric anti-PF4 antibody with a human Fc fragment, fully mimics the effects of human VITT antibodies, as it activates platelets to a similar level in the presence of platelet factor 4 (PF4). Incubated with neutrophils, platelets and PF4, 1E12 also strongly induces NETosis, and in a microfluidic model of whole blood thrombosis, it triggers the formation of large platelet/leukocyte thrombi containing fibrin(ogen). In addition, a deglycosylated form of 1E12 (DG-1E12), which still binds PF4 but no longer interacts with Fcγ receptors, inhibits platelet, granulocyte and clotting activation induced by human anti-PF4 VITT antibodies. This strongly supports that 1E12 and VITT antibodies recognize overlapping epitopes on PF4. In conclusion, 1E12 is a potentially important tool to study the pathophysiology of VITT, and for establishing mouse models. On the other hand, DG-1E12 may help the development of a new drug that specifically neutralizes the pathogenic effect of autoimmune anti-PF4 antibodies, such as those associated with VITT.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Animais , Vacinas contra COVID-19/efeitos adversos , Epitopos , Fibrina , Humanos , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Camundongos , Ativação Plaquetária , Fator Plaquetário 4/efeitos adversos , Fator Plaquetário 4/metabolismo , Púrpura Trombocitopênica Idiopática/induzido quimicamente , Receptores de IgG/genética , Receptores de IgG/metabolismo , Trombocitopenia/induzido quimicamente , Trombose/patologia
15.
Eur J Immunol ; 52(6): 946-957, 2022 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1750362

RESUMO

The nature of the immune responses associated with COVID-19 pathogenesis and disease severity, as well as the breadth of vaccine coverage and duration of immunity, is still unclear. Given the unpredictability for developing a severe/complicated disease, there is an urgent need in the field for predictive biomarkers of COVID-19. We have analyzed IgG Fc N-glycan traits of 82 SARS-CoV-2+ unvaccinated patients, at diagnosis, by nano-LC-ESI-MS. We determined the impact of IgG Fc glyco-variations in the induction of NK cells activation, further evaluating the association between IgG Fc N-glycans and disease severity/prognosis. We found that SARS-CoV-2+ individuals display, at diagnosis, variations in the glycans composition of circulating IgGs. Importantly, levels of galactose and sialic acid structures on IgGs are able to predict the development of a poor COVID-19 disease. Mechanistically, we demonstrated that a deficiency on galactose structures on IgG Fc in COVID-19 patients appears to induce NK cells activation associated with increased release of IFN-γ and TNF-α, which indicates the presence of pro-inflammatory immunoglobulins and higher immune activation, associated with a poor disease course. This study brings to light a novel blood biomarker based on IgG Fc glycome composition with capacity to stratify patients at diagnosis.


Assuntos
COVID-19 , Biomarcadores , COVID-19/diagnóstico , Teste para COVID-19 , Galactose , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Polissacarídeos , SARS-CoV-2 , Índice de Gravidade de Doença
16.
Signal Transduct Target Ther ; 7(1): 44, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1683982

RESUMO

The wide transmission and host adaptation of SARS-CoV-2 have led to the rapid accumulation of mutations, posing significant challenges to the effectiveness of vaccines and therapeutic antibodies. Although several neutralizing antibodies were authorized for emergency clinical use, convalescent patients derived natural antibodies are vulnerable to SARS-CoV-2 Spike mutation. Here, we describe the screen of a panel of SARS-CoV-2 receptor-binding domain (RBD) targeted nanobodies (Nbs) from a synthetic library and the design of a biparatopic Nb, named Nb1-Nb2, with tight affinity and super-wide neutralization breadth against multiple SARS-CoV-2 variants of concern. Deep-mutational scanning experiments identify the potential binding epitopes of the Nbs on the RBD and demonstrate that biparatopic Nb1-Nb2 has a strong escape-resistant feature against more than 60 tested RBD amino acid substitutions. Using pseudovirion-based and trans-complementation SARS-CoV-2 tools, we determine that the Nb1-Nb2 broadly neutralizes multiple SARS-CoV-2 variants at sub-nanomolar levels, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Lambda (C.37), Kappa (B.1.617.1), and Mu (B.1.621). Furthermore, a heavy-chain antibody is constructed by fusing the human IgG1 Fc to Nb1-Nb2 (designated as Nb1-Nb2-Fc) to improve its neutralization potency, yield, stability, and potential half-life extension. For the new Omicron variant (B.1.1.529) that harbors unprecedented multiple RBD mutations, Nb1-Nb2-Fc keeps a firm affinity (KD < 1.0 × 10-12 M) and strong neutralizing activity (IC50 = 1.46 nM for authentic Omicron virus). Together, we developed a tetravalent biparatopic human heavy-chain antibody with ultrapotent and broad-spectrum SARS-CoV-2 neutralization activity which highlights the potential clinical applications.


Assuntos
Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , SARS-CoV-2/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/genética , Afinidade de Anticorpos , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Epitopos/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Fragmentos Fc das Imunoglobulinas/biossíntese , Fragmentos Fc das Imunoglobulinas/genética , Modelos Moleculares , Testes de Neutralização , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/genética , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
17.
Cell Rep Med ; 3(2): 100540, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1671308

RESUMO

It is unclear whether SARS-CoV-2 VOCs differentially escape Fc effector functions of antibodies in addition to neutralization. In this issue of Cell Reports Medicine, Richardson et al.1 show that VOCs differ both in their ability to evade as well as elicit cross-reactive Fc-effector functions.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Evasão da Resposta Imune/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Mutação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , COVID-19/virologia , Reações Cruzadas , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
18.
Cell Rep ; 38(7): 110368, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1649284

RESUMO

Emerging evidence indicates that both neutralizing and Fc-mediated effector functions of antibodies contribute to protection against SARS-CoV-2. It is unclear whether Fc-effector functions alone can protect against SARS-CoV-2. Here, we isolated CV3-13, a non-neutralizing antibody, from a convalescent individual with potent Fc-mediated effector functions. The cryoelectron microscopy structure of CV3-13 in complex with the SARS-CoV-2 spike reveals that the antibody binds from a distinct angle of approach to an N-terminal domain (NTD) epitope that only partially overlaps with the NTD supersite recognized by neutralizing antibodies. CV3-13 does not alter the replication dynamics of SARS-CoV-2 in K18-hACE2 mice, but its Fc-enhanced version significantly delays virus spread, neuroinvasion, and death in prophylactic settings. Interestingly, the combination of Fc-enhanced non-neutralizing CV3-13 with Fc-compromised neutralizing CV3-25 completely protects mice from lethal SARS-CoV-2 infection. Altogether, our data demonstrate that efficient Fc-mediated effector functions can potently contribute to the in vivo efficacy of anti-SARS-CoV-2 antibodies.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , COVID-19/terapia , Animais , Anticorpos Antivirais/química , Citotoxicidade Celular Dependente de Anticorpos , COVID-19/mortalidade , COVID-19/prevenção & controle , COVID-19/transmissão , Modelos Animais de Doenças , Epitopos , Humanos , Imunização Passiva/mortalidade , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Camundongos , Ligação Proteica , Conformação Proteica , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Soroterapia para COVID-19
19.
Cell Rep Med ; 3(2): 100510, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1636907

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOCs) exhibit escape from neutralizing antibodies, causing concern about vaccine effectiveness. However, while non-neutralizing cytotoxic functions of antibodies are associated with improved disease outcome and vaccine protection, Fc effector function escape from VOCs is poorly defined. Furthermore, whether VOCs trigger Fc functions with altered specificity, as has been reported for neutralization, is unknown. Here, we demonstrate that the Beta VOC partially evades Fc effector activity in individuals infected with the original (D614G) variant. However, not all functions are equivalently affected, suggesting differential targeting by antibodies mediating distinct Fc functions. Furthermore, Beta and Delta infection trigger responses with significantly improved Fc cross-reactivity against global VOCs compared with D614G-infected or Ad26.COV2.S-vaccinated individuals. This suggests that, as for neutralization, the infecting spike sequence affects Fc effector function. These data have important implications for vaccine strategies that incorporate VOCs, suggesting these may induce broader Fc effector responses.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , SARS-CoV-2/imunologia , Ad26COVS1/imunologia , Ad26COVS1/uso terapêutico , Adulto , Idoso , COVID-19/sangue , COVID-19/prevenção & controle , COVID-19/virologia , Estudos de Coortes , Reações Cruzadas , Feminino , Células HEK293 , Humanos , Células Jurkat , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/imunologia , Células THP-1 , Resultado do Tratamento , Vacinação/métodos
20.
PLoS Pathog ; 17(12): e1010175, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1592244

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Currently, as dangerous mutations emerge, there is an increased demand for specific treatments for SARS-CoV-2 infected patients. The spike glycoprotein on the virus envelope binds to the angiotensin converting enzyme 2 (ACE2) on host cells through its receptor binding domain (RBD) to mediate virus entry. Thus, blocking this interaction may inhibit viral entry and consequently stop infection. Here, we generated fusion proteins composed of the extracellular portions of ACE2 and RBD fused to the Fc portion of human IgG1 (ACE2-Ig and RBD-Ig, respectively). We demonstrate that ACE2-Ig is enzymatically active and that it can be recognized by the SARS-CoV-2 RBD, independently of its enzymatic activity. We further show that RBD-Ig efficiently inhibits in-vivo SARS-CoV-2 infection better than ACE2-Ig. Mechanistically, we show that anti-spike antibody generation, ACE2 enzymatic activity, and ACE2 surface expression were not affected by RBD-Ig. Finally, we show that RBD-Ig is more efficient than ACE2-Ig at neutralizing high virus titers. We thus propose that RBD-Ig physically blocks virus infection by binding to ACE2 and that RBD-Ig should be used for the treatment of SARS-CoV-2-infected patients.


Assuntos
Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Domínios Proteicos , Proteínas Recombinantes de Fusão/metabolismo , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Sítios de Ligação , Sítios de Ligação de Anticorpos , COVID-19/prevenção & controle , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Imunoglobulina G/uso terapêutico , Camundongos Transgênicos , Testes de Neutralização , Ligação Proteica , Proteínas Recombinantes de Fusão/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA